
原帖由 Erika﹏軒 於 2007-11-9 23:26 發表
根據我既記憶 remainder theorem 係咁
x^5000-x^1001+1 is divided by x+1
remainer = f(-1)
你代x係-1 就會搵到個remainder
中四.....! 原帖由 JaSoNOoOoOo 於 2007-11-9 23:30 發表
你係唔係傻架?
而家就係要搵個remainder呀
平時係f(x)=remainder先計到!
而家佢冇比remainder,就係要自己計出黎呀!
死嫩b!
中四.....! ...
原帖由 Erika﹏軒 於 2007-11-9 23:33 發表
我岩岩拎左本書出黎....
佢寫
remainder theorem
when a polynomial p(x) is divided by x-a,the remainder R is equal to P(a)
唔知邊個先係嫩b呢
原帖由 締ξ死神ψ 於 2007-11-9 23:36 發表
x^5000-x^1001+1 = answer (x+1) + remainder
所以代 x=-1 的話,就可以消除answer
即是說,when x = -1, answer (x+1) = 0
∴ f(-1) = -1^5000 - -1^1001 +1= remainder
(錯誤)!代條式,都要一定有remainder先得原帖由 JaSoNOoOoOo 於 2007-11-9 23:39 發表
我已知了x^5000-x^1001+1=1
因為 remainder theorem關係!
都係你可以實際話比我知~
remainder是多少嗎?
代條式,都要一定有remainder先得
要將佢變成一個衡等式呀!~ ...
原帖由 Erika﹏軒 於 2007-11-9 23:48 發表
點解你到第11又話話已知 "我已知了x^5000-x^1001+1=1" 你好亂![]()
究竟係x^5000-x^1001+1 定x^5000-x^1001+1=1

| 歡迎光臨 IPvE vLan 遊戲平台|網吧系統 (https://www.ipve.com/bbs/) | Powered by Discuz! 6.0.0 |